Statistics 210A Lecture 8 Notes

Daniel Raban

September 21, 2021

1 Bayes Estimation

1.1 Recap: Lower bound for unbiased estimation

Last time, we talked about the score function

$$\nabla \ell(\theta; x),$$

where $\ell(\theta; x) = \log p_{\theta}(x)$ is a log-likelihood. We saw some properties of the score function, like

$$\mathbb{E}_{\theta}[\nabla \ell(\theta; x)] = 0$$

The Fisher information was

$$J(\theta) = \operatorname{Var}_{\theta}(\nabla \ell(\theta; x)) = -\mathbb{E}[\nabla^2 \ell(\theta; x)].$$

If $g(\theta) = \mathbb{E}_{\theta}[\delta(X)]$ with $g : \mathbb{R}^d \to \mathbb{R}$, then

$$\nabla g(\theta) = \operatorname{Cov}_{\theta}(\delta(X), \nabla \ell(\theta; X)).$$

Combining this with Cauchy-Schwarz gives the Cramér-Rao lower bound

$$\operatorname{Var}_{\theta}(\delta(X)) \ge \frac{\dot{g}(\theta)^2}{J(\theta)}, \qquad d = 1$$

with multivariate form

$$\operatorname{Var}_{\theta}(\delta(X)) \ge \nabla g(\theta)^{\top} J(\theta)^{-1} \nabla g(\theta), \qquad d \ge 1.$$

This gives us a lower bound on how small we can make our risk with unbiased estimation.

Example 1.1. Let $X \sim \text{Binom}(n, \theta)$. Consider two estimators $\delta_0(x) = x/n$ and $\delta_1(X) = \frac{x+3}{n+6}$. The second estimator weights the estimation more towards 1/2. How can we say that one is better than the other?

To compare these estimators, we previously ruled out all unbiased estimators. However, we can alternatively try to reduce the *average risk*.

1.2 Some problems with unbiased estimation

Unbiased estimation is not always desirable.

Example 1.2. Suppose $X \sim \text{Binom}(50, \theta)$ and $g(\theta) = \mathbb{P}_{\theta}(X \ge 25)$. The UMVU estimator is

$$\delta(X) = \mathbb{1}_{\{X \ge 25\}},$$

which is somewhat ridiculous because if we saw X = 25, we would assume this probability is 1.

Example 1.3. Suppose $X \sim N_d(\theta, I_d)$, where we want to estimate $\|\theta\|_2^2$. The UMVU estimator is $\|X\|_2^2 - d$ because

$$\mathbb{E}[\|X\|_2^2] = \|\theta\|_2^2 + d.$$

This estimator can be < 0, while $\|\theta\|_2^2$ cannot be. So we can always improve on the estimator by instead considering $(\|X\|^2 - d)^+$ instead.

1.3 Bayes estimation from a frequentist viewpoint

We have the model $\mathcal{P} = \{P_{\theta} : \theta \in \Omega\}$ for the data X, a loss function $L(\theta; d)$, and the risk $R(\theta; \delta) = \mathbb{E}_{\theta}[L(\theta; \delta(X))].$

Definition 1.1. The **Bayes risk** is

$$R_{\text{Bayes}}(\Lambda; \delta) = \int_{\Omega} R(\theta; \delta) \, d\Lambda(\theta)$$
$$= \mathbb{E}[R(\Theta; \delta(X))]$$
$$= \mathbb{E}[L(\Theta; \delta(X))],$$

where $\Theta \sim \Lambda$ and $X \mid \Theta = \theta \sim P_{\theta}$. This is the average-case risk, integrated with respect to a measure Λ on Ω , called the **prior**.

For now, we assume $\Lambda(\Omega) = 1$. Later, we will allow for $\Lambda(\Omega) = \infty$, which is called an **improper prior**.

Definition 1.2. $\delta(X)$ is a **Bayes estimator** if it minimizes $R_{\text{Bayes}}(\Lambda, \delta)$.

This definition depends on \mathcal{P} , Λ , and L. How do we find a Bayes estimator? Fortunately, they are easy to find.

Theorem 1.1. Suppose $\Theta \sim \Lambda$ and $X \mid \Theta = \theta \sim P_{\theta}$. Assume that $L(\theta; d) \geq 0$ for all θ, d and that $R_{\text{Bayes}}(\Lambda; \delta_0) < \infty$ for some $\delta_0(X)$. Then

$$\delta_{\Lambda}(x) \in \underset{d}{\operatorname{arg\,min}} \mathbb{E}[L(\Theta; d) \mid X = x] \text{ for a.e. } x \iff \delta_{\Lambda}(X) \text{ is Bayes.}$$

So we split up the problem by solving it for any fixed x.

Proof. (\Longrightarrow): Let δ be any other estimator. Then

$$R_{\text{Bayes}}(\Lambda; \delta) = \mathbb{E}[L(\Theta; \delta(X))]$$

= $\mathbb{E}[\mathbb{E}[L(\Theta; \delta(X)) \mid X]]$
 $\geq \mathbb{E}[\mathbb{E}[L(\Theta; \delta_{\Lambda}(X)) \mid X]]$
= $R_{\text{Bayes}}(\Lambda; \delta_{\Lambda}).$

In particular, δ_{Λ} has finite Bayes risk because we could plug in δ_0 for δ . (\Leftarrow): By contradiction. Let $E_x(d) := \mathbb{E}[L(\Theta; d) \mid X = x]$. Define

$$\delta^*(x) = \begin{cases} \delta_{\Lambda}(x) & \text{if } \delta_{\Lambda}(x) \in \arg\min E_x(d) \\ \delta_0(x) & \text{if } E_x(\delta_0(x)) < E_x(\delta_{\Lambda}(x)) \\ d^*(x) & \text{otherwise,} \end{cases}$$

where $E_x(d^*(x)) < E_x(\delta_{\Lambda}(x))$. By construction, we have

$$E_x(\delta^*(X)) \le E_x(\delta_0(X))$$

a.s., so $R_{\text{Bayes}}(\Lambda, \delta^*) < \infty$. We also have

$$E_x(\delta^*(X)) \le E_x(\delta_\Lambda(X))$$

a.s., with < on a positive measure set. So

$$R_{\text{Bayes}}(\Lambda, \delta^*) \le R_{\text{Bayes}}(\delta_{\Lambda}(X)),$$

which is a contradiction.

1.4 Posterior distributions

Definition 1.3. The conditional distribution of Θ given X is called the **posterior distribution**.

Definition 1.4. When we have densities $\lambda(\theta)$ for a prior and the likelihood $p_{\theta}(x)$, then the **marginal density** for X is

$$q(x) = \int_{\Lambda} \lambda(\theta) p_{\theta}(x) \, d\mu(\theta).$$

The **posterior density** is

$$\lambda(\theta \mid x) = \frac{\lambda(\theta)p_{\theta}(x)}{q(x)}.$$

In this case, the Bayes estimator is given by

$$\delta_{\Lambda} = \underset{d}{\operatorname{arg\,min}} \int_{\Omega} L(\theta; d) \lambda(\theta \mid x) \, d\theta.$$

Proposition 1.1. If $L(\theta; d) = (g(\theta) - d)^2$ is the squared error, then the Bayes estimator is the posterior mean $\mathbb{E}[g(\Theta) \mid X]$ of $g(\Theta)$.

Proof.

$$\mathbb{E}[(g(\Theta) - \delta(X))^2 \mid X] = \mathbb{E}[(g(\Theta) - \mathbb{E}[g(\Theta) \mid X] + \mathbb{E}[g(\Theta) \mid X] - \delta(X))^2 \mid X]$$
$$= \operatorname{Var}(g(\Theta) \mid X) + (\mathbb{E}[g(\Theta) \mid X] - \delta(X))^2,$$

where the cross term is 0 because $\mathbb{E}[g(\Theta) - \mathbb{E}[g(\Theta) \mid X] \mid X] = 0$. This equals $\operatorname{Var}(g(\Theta) \mid X)$ if $\delta(X) \stackrel{\text{a.s.}}{=} \mathbb{E}[g(\Theta) \mid X]$.

Let's now consider the weighted square error $L(\theta; d) = w(\theta)(g(\theta) - d)^2$. For example, we might take the relative error $L(\theta; d) = (\frac{\theta - d}{\theta})^2$.

Proposition 1.2. For the weighted square error $L(\theta; d) = w(\theta)(g(\theta) - d)^2$, the Bayes estimator is

$$\delta_{\Lambda}(X) = \frac{\mathbb{E}[w(\Theta)g(\Theta) \mid X]}{\mathbb{E}[w(\Theta)]}$$

Example 1.4 (Beta-Binomial). Suppose $X \mid \Theta = \theta \sim \text{Binom}(n, \theta) = \theta^x (1-\theta)^{n-x} {n \choose x}$ with prior $\Theta \sim \text{Beta}(\alpha, \beta) = \theta^{\alpha-1} (1-\theta)^{\beta-1} \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$. Note that in $X \mid \Theta = \theta, \theta$ is a parameter, whereas in the prior, we are giving a distribution over values of θ . The posterior distribution is

$$\lambda(\theta \mid x) = \frac{\lambda(\theta)p_{\theta}(x)}{q(x)}$$

Since this will integrate to 1 in θ , we will ignore the quantities not related to θ .

$$\begin{aligned} & \propto_{\theta} \ \theta^{\alpha-1} (1-\theta)^{\beta-1} \theta^x (1-\theta)^{n-1} \\ & = \theta^{x+\alpha-1} (1-\theta)^{n-x+\alpha-1} \\ & \propto_{\theta} \operatorname{Beta}(x+\alpha, n-x+\beta). \end{aligned}$$

So the posterior distribution is a different Beta distribution. Using what we know about the Beta distribution, we have

$$\mathbb{E}[\Theta \mid X] = \frac{X + \alpha}{n + \alpha + \beta}$$

The interpretation is that we have $k = \alpha + \beta$ "pseudo-trials" with α successes. We can write

$$\delta_{\Lambda}(x) = \frac{x}{n} \cdot \frac{n}{n+\alpha+\beta} + \frac{\alpha}{\alpha+\beta} \cdot \frac{\alpha+\beta}{n+\alpha+\beta}$$

If $n \gg \alpha + \beta$, we can say "the data swamps the prior," whereas for $n \ll \alpha + \beta$, we can say "the prior swamps the data."

Example 1.5 (Normal mean). Suppose $X | \Theta = \theta \sim N(\theta, \sigma^2) \propto_{\theta} e^{-(x-\theta)^2/(2\sigma^2)}$, where σ^2 is known. Take the prior $\Theta \sim N(\mu, \tau^2) \propto_{\theta} e^{-(\theta-\mu)^2/(2\tau^2)}$. The posterior is

$$\lambda(\theta \mid x) \propto_{\theta} \exp\left(\theta\left(\frac{x}{\sigma^2} + \frac{\mu}{\tau^2}\right) - \frac{\theta^2}{2}\left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right)\right).$$

After some algebra,

$$\propto_{\theta} N\left(\frac{x/\sigma^2 + \mu/\tau^2}{1/\sigma^2 + 1/\tau^2}, \frac{1}{1/\sigma^2 + 1/\tau^2}\right).$$

The posterior mean is

$$\mathbb{E}[\Theta \mid X] = X \frac{1/\sigma^2}{1/\sigma^2 + 1/\tau^2} + \mu \frac{1/\tau^2}{1/\sigma^2 + 1/\tau^2},$$

which is called a precision-weighted average.

These examples show that when calculating $\lambda(\theta \mid x)$, we should ignore the parts not depending on θ and try to recognize the resulting shape of the density as a distribution we know already.