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1 Bayes Estimation

1.1 Recap: Lower bound for unbiased estimation

Last time, we talked about the score function

∇`(θ;x),

where `(θ;x) = log pθ(x) is a log-likelihood. We saw some properties of the score function,
like

Eθ[∇`(θ;x)] = 0.

The Fisher information was

J(θ) = Varθ(∇`(θ;x)) = −E[∇2`(θ;x)].

If g(θ) = Eθ[δ(X)] with g : Rd → R, then

∇g(θ) = Covθ(δ(X),∇`(θ;X)).

Combining this with Cauchy-Schwarz gives the Cramér-Rao lower bound

Varθ(δ(X)) ≥ ġ(θ)2

J(θ)
, d = 1

with multivariate form

Varθ(δ(X)) ≥ ∇g(θ)>J(θ)−1∇g(θ), d ≥ 1.

This gives us a lower bound on how small we can make our risk with unbiased estimation.

Example 1.1. Let X ∼ Binom(n, θ). Consider two estimators δ0(x) = x/n and δ1(X) =
x+3
n+6 . The second estimator weights the estimation more towards 1/2. How can we say that
one is better than the other?

To compare these estimators, we previously ruled out all unbiased estimators. However,
we can alternatively try to reduce the average risk.
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1.2 Some problems with unbiased estimation

Unbiased estimation is not always desirable.

Example 1.2. Suppose X ∼ Binom(50, θ) and g(θ) = Pθ(X ≥ 25). The UMVU estimator
is

δ(X) = 1{X≥25},

which is somewhat ridiculous because if we saw X = 25, we would assume this probability
is 1.

Example 1.3. Suppose X ∼ Nd(θ, Id), where we want to estimate ‖θ‖22. The UMVU
estimator is ‖X‖22 − d because

E[‖X‖22] = ‖θ‖22 + d.

This estimator can be < 0, while ‖θ‖22 cannot be. So we can always improve on the
estimator by instead considering (‖X‖2 − d)+ instead.

1.3 Bayes estimation from a frequentist viewpoint

We have the model P = {Pθ : θ ∈ Ω} for the data X, a loss function L(θ; d), and the risk
R(θ; δ) = Eθ[L(θ; δ(X))].

Definition 1.1. The Bayes risk is

RBayes(Λ; δ) =

∫
Ω
R(θ; δ) dΛ(θ)

= E[R(Θ; δ(X))]

= E[L(Θ; δ(X))],

where Θ ∼ Λ and X | Θ = θ ∼ Pθ. This is the average-case risk, integrated with respect
to a measure Λ on Ω, called the prior.

For now, we assume Λ(Ω) = 1. Later, we will allow for Λ(Ω) = ∞, which is called an
improper prior.

Definition 1.2. δ(X) is a Bayes estimator if it minimizes RBayes(Λ, δ).

This definition depends on P, Λ, and L. How do we find a Bayes estimator? Fortunately,
they are easy to find.

Theorem 1.1. Suppose Θ ∼ Λ and X | Θ = θ ∼ Pθ. Assume that L(θ; d) ≥ 0 for all θ, d
and that RBayes(Λ; δ0) <∞ for some δ0(X). Then

δΛ(x) ∈ arg min
d

E[L(Θ; d) | X = x] for a.e. x ⇐⇒ δΛ(X) is Bayes.
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So we split up the problem by solving it for any fixed x.

Proof. ( =⇒ ): Let δ be any other estimator. Then

RBayes(Λ; δ) = E[L(Θ; δ(X))]

= E[E[L(Θ; δ(X)) | X]]

≥ E[E[L(Θ; δΛ(X)) | X]]

= RBayes(Λ; δΛ).

In particular, δΛ has finite Bayes risk because we could plug in δ0 for δ.
(⇐= ): By contradiction. Let Ex(d) := E[L(Θ; d) | X = x]. Define

δ∗(x) =


δΛ(x) if δΛ(x) ∈ arg minEx(d)

δ0(x) if Ex(δ0(x)) < Ex(δΛ(x))

d∗(x) otherwise,

where Ex(d∗(x)) < Ex(δΛ(x)). By construction, we have

Ex(δ∗(X)) ≤ Ex(δ0(X))

a.s., so RBayes(Λ, δ
∗) <∞. We also have

Ex(δ∗(X)) ≤ Ex(δΛ(X))

a.s., with < on a positive measure set. So

RBayes(Λ, δ
∗) ≤ RBayes(δΛ(X)),

which is a contradiction.

1.4 Posterior distributions

Definition 1.3. The conditional distribution of Θ given X is called the posterior dis-
tribution.

Definition 1.4. When we have densities λ(θ) for a prior and the likelihood pθ(x), then
the marginal density for X is

q(x) =

∫
Λ
λ(θ)pθ(x) dµ(θ).

The posterior density is

λ(θ | x) =
λ(θ)pθ(x)

q(x)
.
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In this case, the Bayes estimator is given by

δΛ = arg min
d

∫
Ω
L(θ; d)λ(θ | x) dθ.

Proposition 1.1. If L(θ; d) = (g(θ) − d)2 is the squared error, then the Bayes estimator
is the posterior mean E[g(Θ) | X] of g(Θ).

Proof.

E[(g(Θ)− δ(X))2 | X] = E[(g(Θ)− E[g(Θ) | X] + E[g(Θ) | X]− δ(X))2 | X]

= Var(g(Θ) | X) + (E[g(Θ) | X]− δ(X))2,

where the cross term is 0 because E[g(Θ)−E[g(Θ) | X] | X] = 0. This equals Var(g(Θ) | X)
if δ(X)

a.s.
= E[g(Θ) | X].

Let’s now consider the weighted square error L(θ; d) = w(θ)(g(θ)−d)2. For example,
we might take the relative error L(θ; d) = ( θ−dθ )2.

Proposition 1.2. For the weighted square error L(θ; d) = w(θ)(g(θ) − d)2, the Bayes
estimator is

δΛ(X) =
E[w(Θ)g(Θ) | X]

E[w(Θ)]
.

Example 1.4 (Beta-Binomial). Suppose X | Θ = θ ∼ Binom(n, θ) = θx(1−θ)n−x
(
n
x

)
with

prior Θ ∼ Beta(α, β) = θα−1(1− θ)β−1 Γ(α)Γ(β)
Γ(α+β) . Note that in X | Θ = θ, θ is a parameter,

whereas in the prior, we are giving a distribution over values of θ. The posterior distribution
is

λ(θ | x) =
λ(θ)pθ(x)

q(x)

Since this will integrate to 1 in θ, we will ignore the quantities not related to θ.

∝θ θα−1(1− θ)β−1θx(1− θ)n−x

= θx+α−1(1− θ)n−x+α−1

∝θ Beta(x+ α, n− x+ β).

So the posterior distribution is a different Beta distribution. Using what we know about
the Beta distribution, we have

E[Θ | X] =
X + α

n+ α+ β

The interpretation is that we have k = α + β “pseudo-trials” with α successes. We can
write

δΛ(x) =
x

n
· n

n+ α+ β
+

α

α+ β
· α+ β

n+ α+ β
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If n� α+ β, we can say “the data swamps the prior,” whereas for n� α+ β, we can say
“the prior swamps the data.”

Example 1.5 (Normal mean). Suppose X | Θ = θ ∼ N(θ, σ2) ∝θ e−(x−θ)2/(2σ2), where σ2

is known. Take the prior Θ ∼ N(µ, τ2) ∝θ e−(θ−µ)2/(2τ2). The posterior is

λ(θ | x) ∝θ exp

(
θ
( x
σ2

+
µ

τ2

)
− θ2

2

(
1

σ2
+

1

τ2

))
.

After some algebra,

∝θ N
(
x/σ2 + µ/τ2

1/σ2 + 1/τ2
,

1

1/σ2 + 1/τ2

)
.

The posterior mean is

E[Θ | X] = X
1/σ2

1/σ2 + 1/τ2
+ µ

1/τ2

1/σ2 + 1/τ2
,

which is called a precision-weighted average.

These examples show that when calculating λ(θ | x), we should ignore the parts not
depending on θ and try to recognize the resulting shape of the density as a distribution we
know already.

5


	Bayes Estimation
	Recap: Lower bound for unbiased estimation
	Some problems with unbiased estimation
	Bayes estimation from a frequentist viewpoint
	Posterior distributions


